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1. Motivation

In a previous report (Jim_nez et al. 1993, referred from now on as JWSR),

it was shown that the strong vorticity in isotropic turbulence is organized into
tubular vortices ("worms") whose properties were characterized through the use

of full numerical simulations at several Reynolds numbers. That paper should be
consulted for details as well as for the previous history of the subject. At the time

most of the observations were kinematic, and several scaling laws were discovered

for which there was no theoretical explanation. In the meantime, further analysis

of the same fields yielded new information on the generation of the vortices, and it

was realized that even if they have to had to be formed by stretching, they were at

any given moment actually compressed at many points of their axes (Jim_nez and

Wray, 1994). This apparent contradiction was partially explained by postulating

axial inertial waves induced by the nonuniformity of the vortex cores, which helped

to "spread" the axial strain and allowed the vortices to remain compact even if not

uniformly stretched. The existence of such solutions was recently proved numerically
by (Verzicco, Jim_nez & Orlandi 1994). The present report discusses a set of new

numerical simulations of isotropic turbulence, and a re-analysis of the old ones, in

an effort to prove or disprove the presence of these waves in actual turbulent flows
and to understand the dynamics, as oposed to the kinematics, of the vortices.

One set of experiments use hyperviscous dissipation instead of regular viscosity.

Since the strong vortices are known to be dissipative structures with characteris-

tic radii in the range of the near dissipation range of the turbulence cascade, they
can be considered as being forced by inertial range eddies, but to be dominated

by viscous diffusion. The hope was that hyperviscosity would change the diffusion

mechanism without changing the forcing and give us a better insight into the dy-

namics. This strategy was largely successful, but some unexpected consequences of

hyperviscosity were found in the form of a strong bump in the upper inertial range
of the spectrum, spanning at least one and a half decades in wavenumber, and which

seems to be an evolution of the much weaker bump described in some experiments

in real fluids. This bump is discussed below in detail and may be of some practical

relevance since some sub-grid models in LES computations use eddy viscosity laws

that resemble hyperviscosity, and the present result suggests that their effect might
distort the spectrum across a range of scales comparable to that of most practical

LES numerical grids.
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2 NASA Ames Research Center, Moffet Field, Ca. 94035
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Finally, the study of strong vorticity leads directly to the question of intermit-

tency. It appears that at the Reynolds numbers of our flows (Rex < 170), most

of the extended tails in the probability density functions of the velocity gradients

can be associated to the vortex filaments and scale with Reynolds number in the

same way as they do. We show evidence that the volume ratio occupied by the fila-

ments decreases with Rex while the intensity of the individual structures increases.

This raises the question, already posed in JWSR, of their behavior in the infinite

Reynolds number limit. It would appear that the mechanisms described here can

not be extended indefinitely as Rex _ oo although the limitations of numerical

resolution prevent us from giving a definite answer.

The simulations, both viscous and hyperviscous, are described first. The global

flow statistics, especially those related to intermittency, are described next, followed

by a description of worm properties and a short discussion of the results. The present

is an interim report, and more work is needed, especially from the point of view of

theoretical analysis.

2. Viscous simulations

The viscous simulations used in this report are essentially the same as in JWSR.

The spectral numerical scheme (Rogallo 1981) and other parameters are described

in that paper, which should also be consulted for the detailed definitions of the

different quantities, which generally follow (Batchelor 1953). Some simulations were

continued for a longer time to improve the statistics, and the two lower Reynolds

numbers were repeated at higher resolution, kmaxq = 4 instead of kmaxr/ = 2, to

check that the scalings reported in :lWSRwere not artifacts of the use of a uniform

resolution in Kolmogorov units. No artifacts were found. These new simulations

were also used in a separate study of the effect of resolution on both experiments

and in simulations (Jim_nez 1994b).

Since the time of the previous report, the fields corresponding to the highest

Reynolds number (Rex = 168 on a 5123 grid) became unavailable for further pro-

cessing. To paliate this problem, a new simulation was run on a 3843 grid, resulting

in Rex = 141. All these simulations, including the older ones, are sumarised in

Table 1, which refers only to the numerical resolution kmaxr/= 2.

As in the original study, all simulations were forced to reach a statistically sta-

tionary state with a given energy dissipation, adjusted to achieve a desired value

for kmaxq. In particular, every Fourier velocity coefficient with a wave number such

that k = Ikl < 2.5 was multiplied at each time step by a common real factor, chosen

so that the extra energy introduced in that way was equal to the desired energy

dissipation.

It was felt that forcing the flow at such low wave numbers could reduce excessively

the statistics of the large scales and perhaps affect the flow. To check that effect,

two simulations were performed in which the same type of forcing was applied to

the spectral shell 3.5 < [k[ < 6.5. In general, few differences were found between

the two types of simulations although the new statistics should clearly be better
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Rex N L, L,/)_ L,/_ eL/u '3 t/T -Fa

35 64 1.8 2.3 27 1.09 54.2 0.49

63 128 2.2 4.2 65 0.80 9.3 0.50

94 256 2.0 6.3 120 0.72 8.2 0.52

142 384 2.4 9.5 222 0.73 5.9 0.52

168 512 2.4 11.2 286 0.69 5.9 0.52

26 128 0.6 1.7 18 0.96 11.2 0.50

48 256 0.7 3.2 44 0.62 15.1 0.51

TABLE 1. Numerical and flow parameters for the viscous cases analyzed in this

paper, tit is the total run time in eddy turnover units, Fs is the skewness coefficient,

L is the integral scale, and L, = u'S/e is the eddy dissipation scale. The last two

cases were forced at higher wavenumbers as explained in text.

than the older ones. Those differences that were found are discussed below in the

corresponding sections, and the flows themselves are documented in Table 1. The

better statistics were compensated by the possibility of reaching only much lower

Reynolds numbers. Fig. 1 presents compensated spectra for the different flows.

3. Hyperviscosity

Hyperviscosity, the use of the iterated Laplacian in place of the usual dissipative

operator, has been used often in the numerical simulation of turbulence in an effort

to obtain longer inertial ranges out of a given resolution. The hope has been that
its use would not affect the inviscid aspects of the turbulent flow although it clearly

changes the characteristics of the dissipative scales. Since the vortices that con-
cern us seem to be dissipative features, hyperviscous simulations were undertaken

in the hope of clarifying their dynamics by changing their behavior. Define the

hyperviscosity exponent _ through the momentum equation,

D___uu+ Vp = (-1)c_+lvv 2au (1)

Dt

The regular Navier-Stokes equations correspond to a -= 1. In spectral calculations,

the dissipative term is obtained by multiplying the Fourier coefficients of the velocity

by Ikl 2a, and there is no reason to restrict a to be an integer although the phys-

ical representation of the dissipation operator may be complicated for non-integer

exponents.
The first difficulty in analyzing hyperviscous turbulence simulations is to find

reasonable scaling quantities. Since the inertial cascade mechanism is not expected

to change, the Kolmogorov dimensional arguments should apply, and the inner

microscale should depend only on the viscosity coefficient, v, and of the dissipation,
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FIGURE 1. Three dimensional compensated energy spectra for the different viscous

cases. Vertical axis is e-2/akS/aE(k) to enhance the inertial range, a) Forcing at

low wavenumbers. -- : Rex = 168; ........ : 142; .... : 94;----- : 63; ----- :

36. b) Forcing at intermediate wavenumbers. ---- : Rex = 48; ----- : 26. -- :

Rex = 94 (from Fig. la, for comparison).
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which is expressed in terms of the energy spectrum as

2u f k2_E(k) dk.
J

(2)

The inertial scaling is
E(k) = v2nf(k ),

where

v = (_),/3, ,1= (u3/_) '/_c3°-'). (3)

Note that these definitions agree with the usual ones when a = 1, but that v should

not be interpreted as a regular viscosity coefficient, even dimensionally.

There is no unique generalization for the Taylor microscale. In regular turbulence

its most obvious use is in defining the microscale Reynolds number Rex, which is

then related to the ratio of the different length scales as

L,I, = 15-314Re_ 12, = 15'14Re_ 12, (4)

where L, = u'3/e. If we take these two relations as defining )_ and Re_, the result

is

A = v"_(L_rt2) x/3, ReA 15(1-a)]2a(u'A2--_-l) 1]_= , (5)

which reduces to the usual one for regular viscosity.

The numerical experiments are listed in Table 2. All except one were conducted

at the same numerical resolution, 1283 and kmaxr/= 2, and result in roughly similar

Rea. A single case was repeated on a larger grid to check Reynolds number scaling.

All the fields were forced at Ikl _< 2.5 in the same way as in the viscous cases. One

of the quantities listed in the table,

e* = e/vll°w '[3_-1)/_

is a generalization of the equation e/vw 12 = 1, which only holds for regular viscosity.
The deviation of this coefficient away from unity measures the failure of the vorticity

magnitude to represent dissipation in hyperviscous flows.

3.I Numerics

There are special numerical problems associated with high hyperviscous expo-

nents. The principal one is the limitation imposed to the time increment by the

accuracy requirements of the dissipative term. Since most codes implement this

substep by some unconditionally stable implicit scheme, the viscous parameter does

not represent a stability limitation, but unless the time increment is chosen short

enough, the evolution of the velocity due to dissipation will be represented inaccu-

rately, and while the resulting system will usually be equivalent to some dissipative

model, it would not be possible to claim that it represents a hyperviscosity of the

intended order.
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Rex N L, L_/A L_/y eL/u 'a e* t/T -F3

1. 63 128 2.2 4.2 65 0.80 1.00 9.3 0.50

1.25 65 128 2.2 4.3 68 0.69 0.57 3.1 0.50

1.50 64 128 2.2 4.2 66 0.68 0.41 3.1 0.49

2. 68 128 2.4 4.5 73 0.66 0.27 3.4 0.49

2.50 68 128 2.5 4.5 74 0.65 0.21 9.5 0.49

4. 75 128 2.8 5.0 86 0.65 0.15 4.8 0.42

2. 95 256 2.0 6.3 121 0.84 0.28 1.5 0.52

TABLE 2. Numerical and flow parameters for the hyperviscous cases analyzed

in this paper. The case a - 1 is the same one described in Table 1, and is only

included here for comparison. The quantity e* is defined in the text.

Consider a spectral code for the evolution equations (1). The accuracy and sta-

bility of the convective term is controlled by the usual CFL parameter, which is
proportional to

c _ ulkmaxAt, (6)

while that of the hyperviscous term is controlled by

6 2or= vkm_xAt. (7)

In our code, which uses an integrating factor for the dissipative term (RogaUo 1981),

the modes corresponding to kmax are multiplied every time step by exp (-6), and

the explicit integrator for the advection term assumes that this factor is close enough

to unity for the accuracy of the nonlinear interactions not to be destroyed during

the step. This requires that 6 should not be too large. Other implicit schemes have

different behaviors, but the accuracy requirement for the dissipative term is always
that 6 be at most O(1).

The time increment At is usually adjusted by fixing the CFL, and the viscous

parameter has to be measured. In our code, u' is given by the dissipation e and

by the form of the spectrum through the choice of the resolution parameter kmax_/.

Assume that e _, u'a/L _ u'ako, where k0 is the center of our forcing band. It

follows from our definition of the Kolmogorov scale that

u' ~ vi71-_<_( koiT)-l/3. (8)

When At is obtained using this estimate in the CFL and is then substituted in 6,
we obtain

6/c = const. (km_xiT)2"-2ia(kolkm,,)ll a ,_ 1. (9)

From our observations, the empirical constant is approximately 0.03.
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FIGURE 2. a) Dissipation spectra, e-2/39-s/3(kg)2aE(k ), for different hypervis-

cosity exponents. From left to right: a = 1, 1.25, 115, 2.0, 2.5, 4.0. b) Wavenumber

of maximum dissipation.

Fig. 2a displays the hyperviscous dissipation spectra k2"_E(k), for various expo-

nents, and Fig. 2b shows the position of the dissipation maximum for the different

cases. It is clear from these figures that hyperviscosity succeeds in separating the

forcing and dissipation ranges, even at moderate resolutions, although it will be

seen below that this does not guarantee an inertial range in the usual sense. It is

also clear that kmax1? should be chosen somewhat larger than unity if the dissipa-

tive range is to be reasonably well represented, making the requirement expressed

in Eq. (9) more restrictive as the hyperviscosity order increases. In practice, for our

choice of kmax9 = 2 and for k0 = 2, kmax = 60 - 120 (1283 or 2563 grids), it limits

our simulations to _ < 4 - 5.

8.2 The near dissipation spectrum

Compensated three-dimensional spectra for some of the hyperviscous fields are

presented in Fig. 3a. There is no collapse in the dissipative range, and the quali-

tative shape of the spectra changes drastically as a function of the hyperviscosity

exponent although it should be noted that the two spectra corresponding to the

same exponent, a = 2, collapse well. As the exponent increases, a large "bump"

appears in the near-dissipation range that for the highest exponents and at these

low Reynolds numbers, dominates the spectrum. In Fig. 3b, in which the spectrum

is premultiplied by k, the bump is seen to behave approximately as k -1 .

Anomalous bumps in this region of the spectrum have been reported in experi-

mental viscous flows (Mestayer 1982, She & Jackson 1993, Saddoughi & Veeravalli

1994), and the k -1 behavior was claimed by the second of these groups. A theo-

retical explanation for this power law, based on the depletion of nonlinearity in the

near dissipation scales, was offered in (Yakhot & Sakharov 1993). An older expla-

nation for the presence of the bump, although not for the power behavior, is that

the outgoing energy cascade is inhibited in the dissipation range since energy has to

move into spectral triads with much smaller amplitudes than those corresponding

to the equilibrium k -5/3 spectrum while the incoming energy is not subject to that
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FIGURE 4. Compensated transverse spectra showing extent of near dissipation

bump. -- : Rex = 168, a = 1; dashed: Rex = 64, a = 1.5; ........ : Rex =

96, a = 2; ----- : Rex = 64, a = 4; ----- : Rex = 600, a = 1, after (Saddoughi &

Veeravalli 1994). The peak in the lowest wave numbers of all the numerical spectra

is spurious due to forcing scheme.

inhibition. The bump is a consequence of the resulting enery "bottleneck" in the

cross-over region (Falkovich 1994). The latter author has described the same spec-

tral behavior in wave turbulence (Ryzhenkova & Falkovich 1990) and has remarked

that it would become more pronounced in hyperviscous simulations as the damping

becomes more abrupt. The effect is present in spectral turbulence models and has

been observed in EDQNM based simulations (Mestayer, Chollet & Lesieur 1983).

Finally, some recent hyperviscous simulations of isotropic turbulence, using a -- 8,

have also reported the presence of a k -1 bump (Borue & Orszag 1994).

Since it is known that the near dissipation region contains strong vortex filaments,

they may also provide an explanation for the k -1 behavior. That randomly oriented

vortex filaments would generate a spectrum with this behavior was first noted by

Townsend (1951) and observed directly in JWSR by computing the spectrum of

a flow in which all the vorticity, except the one contained in the strong filaments,

had been zeroed. Moreover, an (inviscid) infinite vortex filament is an equilibrium

solution of the Euler equation for which, by definition, all the nonlinear interactions

cancel identically, and for which the turbulent cascade is fully absent, even if the

filament itself is usually formed by the cascade mechanism of vortex stretching. In

this sense the three explanations are not necessarily incompatible, and the filament

hypothesis merely points to a possible physical implementation of the two previous
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ideiLs.

However, it will be shown below that in the course of the present investigation,

we were not able to find significant differences between the structure or frequency

of filaments in viscous and hyperviscous flows, which may explain the presence of

stronger bumps in the latter. As a consequence the filament explanation remains

unlikely. Also, our observations cast doubts on the -1 exponent as a preferred

spectral law.

In Fig. 4 we present transverse compensated spectra from several simulations,

including our highest Reynolds number regular viscosity case, together with a ex-

perimental spectrum from (Saddoughi & Veeravalli 1994). The bump is clearly seen

in the experimental spectrum and, in retrospect, also in the regular viscous simu-

lation, showing that even the highest Reynolds number computed by us is far from

containing a true inertial range.

Figs. 5a-b display the local logarithmic slope, d(log E)/d(log k), for the different

spectra in the near dissipation region. They also include data from (Saddoughi

& Veeravalli 1994) although in this case, to make it comparable to ours, it is in

the form of a three-dimensional spectrum obtained from their data for Ell, using

the assumption of isotropy. Fig. 5a, for the regular viscous cases, reinforces the

conclusion that all our simulations are far from the real inertial range. Fig. 5b, which

contains the hyperviscous cases, shows a steady climb of the least negative slope

with increasing a with no sign of saturating at k -1. Moreover, the two Reynolds

numbers at a = 2 show the same tendency as the regular viscous cases with the

spectral hump extending further into the low wavenumber range, suggesting that

these simulations are also far from reaching a true inertial range and that the extent

of the bottleneck region is not shortened by the sharpening of the dissipation peak.

4. Velocity gradients

It has been known for a long time that the probability density functions for

velocity differences become increasingly non-Gaussian at short distances, and that

this leads to highly intermittent behavior of the velocity gradients, which becomes

more pronounced at high Reynolds numbers. In JWSRwe presented histograms

for different combinations of gradients (vorticity and total strain magnitudes and

local stretching, a = wSw/w2), which clearly showed this Reynolds number effect.

A compact representation of this departure from Gaussianity is provided by the

high order flatness and skewness Fn(() =< (" > / < (2 >n/2, two of which are

given in Fig. 6 for the viscous and hyperviscous cases. In each case the vertical

origin of coordinates has been chosen to coincide with the Gaussian value (F4 = 3,

F6 = 15. The tendency for both flatnesses to grow with Reynolds number is clear,
as is the fact that the simulations forced at intermediate wave numbers do not

differ significantly in this respect from those forced at low wave numbers. The

values for the fourth order flatness of the longitudinal gradients agrees well with

the compilation in (Van Atta & Antonia 1980) although our experiments cover a

much narrower range of Reynolds numbers than theirs.

The variation of the flatness with the hyperviscosity exponent (Fig. 6b) is more
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surprising. While it seems from table 2 that the equivalent Reynolds number in-

creases slightly with increasing a and while the same conclusion could be reached

from the increasing separation between the integral scales and the dissipation peak

(Fig. 2a), the flatness is seen to decrease with _. The same behavior is observed in

the histograms of almost all the gradient quantities, as can be seen for the vorticity

magnitude in Fig. 7a. The exception is the stretching histogram (Fig. 7b) which

shows a much weaker variation with a, essentially within the statistical uncertainty.

It should be stressed that the variation of the flatness with Rex is similar in

the hyperviscous flows at constant _ and in the viscous ones. This is clear from

table 3, which contains flatness for the two Rex available at a = 2. There is also

a consistent, although much weaker, increase in the skewness, F3, with Rex which

can be seen from tables 1 and 2, and which is also in general agreement with the

data in (Van Atta & Antonia 1980).

5. Worms

An algorithm was developed in JWSR to track individual filaments and to mea-

sure their properties. The same algorithm has been used here to analyze the new

flow fields and to obtain data which may be useful in understanding their dynamics.

The axis of each filament is followed until some arbitrary definition of its end point

is reached and the vortex radius, circulation, peak axial vorticity, and axial stretch-

ing are measured at each point and used to compile statistics over the fraction of
the flow contained in the worms.

The axial stretching is defined as niSijnj, where Sij is the strain tensor and ni
is the unit vector in the direction of the axis. The condition to end a filament was
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F4, F61 F6t

68 4.5 5.9 49 100
95 4.8 6.5 62 131

TABLE 3. Flatness factor for the two hyperviscous cases with cr = 2. Subscript e

refers to longitudinal gradients, t to transverse ones.

described in detail in JWSR but depends essentially on the axial vorticity weakening

below a given level.
The simplest statistic is the mean value of a given property over all the axial

points of all the worms detected in a given flow. There are two groups of properties.
Since filaments have to be formed by stretching of preexisting vorticity, the axial

stretching can be considered as the driving force in the formation of the worms
while all the other properties can be considered as the results of that forcing.

Both groups behave differently. The mean value of axial stretching, averaged
over the axes of the worms, is shown in Fig. 8 normalized with the rms value

of the vorticity over the whole flow, which is the natural scaling for the velocity

gradients in the bulk of the flow. Except for a slight tendency to grow with Rex,

the stretching scales well with _' although the proportionality constant depends on

the hyperviscosity exponent. It was shown in JWSR that the average stretching,

conditioned on a given vorticity, depends only weakly on the conditioning value,
and this was interpreted as an indication that the filament did not stretch itself

appreciably. The present result reinforced that conclusion since it will be seen
below that the mean vorticity in the worms is a fairly strong function of Rex while

we have shown that the stretching is not.

This is further confirmed by Figs. 9 and 10, which show correlation functions and

lengths for the axial distribution of the stretching along worms. The correlation

length is a useful indication of the typical length scale of a given property, and we
use it here as a less subjective indication of length than the one used in JWSR,

which was based on the total length of the detected worms.

Consider a quantity, ((s), given as a function of arc length along the axis and
assumed to have zero mean value, and define the correlation

R(s) =< + > / < ¢2 >, (10)

where the average is taken over the axial position s'. This function has zero integral

and R(0) = 1. It will first become negative at some point s = so (Fig. 9). We define
the correlation length as

_, = fo'°SR(s)ds/ fo'°R(s)ds. (11)

The same definition can be used on properties which are defined at all points in

the flow for which the arc length s has to be substituted by a coordinate distance
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(a) Normalized with the Kolmogorov length. (b) Normalized with the correlation

length of longitudinal gradients over the whole flow. Symbols as in Fig. 8. The

dashed line in (a) is the Taylor microscale, for comparison.

(e.g. x). This global correlation function can be computed as the inverse Fourier

transform of the one-dimensional spectrum of the quantity (Batchelor 1953). From

that, and since the power spectrum of the velocity gradients has its maximum at

the near disipation region, it follows that the correlation lengths for gradients when

averaged over the whole flow should scale with _.

Fig. 10a shows the correlation length for the stretching along the worms, go,, which

scales well with 77, although the scaling constant depends again on the hyperviscosity

exponent. This is not surprising since we have shown that the shape of the near

dissipation spectra depends on a and so does presumably the relation between the

size of the gradient eddies and r/. In Fig. 10b we show ga normalized with the

correlation length of the longitudinal gradients Ou/Ox taken over the whole flow.

Most of the dependence with o_ disappears, and the ratio is close to one, showing

once again that the stretching along the worms is essentially indistinguishable from

that at a generic point in the flow and that self stretching is not important.

It is therefore surprising that the axial correlation lengths of all the resulting

worm properties are much larger than q and scale apparently on the integral scale

of the flow (Fig. 11). This generalizes the observation in JWSR, which has been

made by all the investigators that have studied these filaments, that their length

is of the order of the integral scale. While the original observations were made on

the basis of arbitrary visualization or termination criteria, the present result is a

more objective characterization of the same phenomenon. In these last two figures

we have included a curve for the Taylor microscale .k which is defined by Eq. (4).

This is done mainly for comparison, but also because this scale has been suggested
often as a natural scale for the turbulent eddies. In particular, it was observed

in JWSR that if the characteristic stretching along worms was of O(w') and since

it is known that the velocity differences in a turbulent flow scale with u' without

strong Reynolds number effects, the largest possible length scale for the stretching
was O(w'/u') = O(,k). It was felt at the time that this contradicted the observation
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FIGURE 13. Mean worm radius. (a) Normalized with the Kolmogorov length. (b)
Normalized with Burgers' radius for the average axial strain. Symbols as in Fig. 8.

that the length of the worms was O(L_) since it was assumed that vortices could

only survive if stretched on the average. This proved to be false, and it was shown

in (Jim_nez & Wray 1994) that the strain along the worms is compressive over a

large fraction of the axis (Fig. 12). Verzicco, Jim_nez and Orlandi (1994) have
shown recently by direct computation that vortices subject to spatially nonuniform

axial strain, even one with zero axial average stretching, can reach a steady state
thanks to the presence of axial inertial waves which "smooth" the strain over the
compressive parts.

It is still interesting to note that although the L_ scaling seems to be a better

representation of the data in Fig. 11, especially at the higher Rex, a scaling of a
few Taylor microscales is not completely incompatible with them.

In (Jim_nez & Wray 1994) the equivalent to Fig. 12 was plotted together with
probability density functions of the same quantity computed over the whole flow

field. The differences between the two were shown to be small, stressing again that
the forcing of the filaments is not different from that of the rest of the flow. Note

however that the collapse of the stretching pdf's over the full field for different values

of _ (Fig. 7b) is better than those of the same quantity over the worms (Fig. 12),
suggesting either that there is a selection mechanism for the location of worms in
terms of stretching or a dynamical feedback from the worms into the structure of

the stretching itself. The same conclusion can be drawn from the dependence of the
average worm stretching on _, shown in Fig. 10.

The average radius of the worms is given in Fig. 13a. It scales with the Kol-

mogorov scale although there is again a different proportionality constant for dif-

ferent hyperviscosity exponents. A better collapse is possible if we assume that the

filaments are Burgers' vortices driven by the mean axial strain. For viscous flows,

the Burgers' radius due to a strain w _ is 2(t,/w_) 1/_ = 2r/, which agrees with the
approximate Kolmogorov scaling for these flows in Fig. 13a.

Hyperviscous Burgers' vortices were computed in (Jim6nez 1994a). Although

their outer tails are different from the viscous ones and actually change sign before
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they settle to zero, their cores are approximately Gaussian (Fig. 14a) with a 1/e

radius which can be approximated for _ _ 5 by

Rb = (2.022 - 0.0843_ + 0.0688a 2 - O.O086c_a)(v/a) 1/2'_, (12)

where the coefficient is the result of a polynomial fit to the solution of an ordinary

differential equation. When this formula is used to compute the Burgers' radius as-

sociated to the measured mean stretching from Fig. 8, the results are the normalized

radii in Fig. 13b, in which the effect of hyperviscosity is essentially absent.

Fig. 14.b contains vorticity profiles averaged along the axes of all the worms in

a given flow. The profiles are also approximately Gaussian, and it is interesting

to note that the more hyperviscous profiles show signs of negative vorticity at the

edges, which may be a reflection of the oscillations in the tails of the theoretical
solutions.

Full probability density functions for the local radius and for the radius divided

by the local Burgers' radius are given in Fig. 15. To avoid effects related to the

variations of the mean values, the averages of all those distributions are adjusted to

unity. The collapse of the Burgers' plot is excellent, but there is some differences

between the pdf's of the raw radii in viscous and in hyperviscous flows, probably

reflecting the differences in the structure of the local stretching that were discussed
above.

The mean values of the vorticity at the axes of the worms are given in Fig. 16a.
n 1/2

It was suggested in JWSR that w/w _ increases with Reynolds number as he)` and

that same normalization is used in the figure. Except for the case at Re), = 48

in which the forcing was done at higher wave numbers, it seems to work correctly.

The intermediate forcing seems to work differently from all the other flows for all

quantities which scale with the integral length as can also be observed in Fig. 11.

The large scales are different from those of the flows forced at lower wave numbers,

and it appears that the axial distribution of vorticity in the worms is controlled

by them. A line corresponding to w ,_ w * is also included in the figure and is

incompatible with the data. In Fig. 16b we have represented the mean value of the

vortex circulation, normalized with the mean vorticity and radius for each flow. It

clusters around unity in what is essentially a consistency check for the averages,

but which also reflects that the statistical distribution of vorticity and radius are

relatively independent of the dissipation model. A few representative pdf's are

given in Fig. 17, normalized to unit mean. The sharp cut-off of the vorticity pdf

is artificial. The tracking algorithm terminates a worm whenever its axial vorticity
falls below w'.

It is finally interesting to enquire which is the relative importance of worms

with respect to the bulk of the flow. This is largely a matter of definition, but a

volume fraction can be defined by taking the mean vorticity detected at the axes

by our algorithm and defining as worms all the points whose vorticity magnitude is

above that threshold. This, although arbitrary, seems justified since it appears from

Fig. 17a that our threshold is below the maximum of the distribution and is probably

not distorting the mean value too much. When this is done, a volume fraction can
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be read from the vorticity histogram of the flow (Fig. 7a) and is represented in

Fig. 18. The volume occupied by the worms decreases with Reynolds number as

Re_ -2. Since their characteristic vorticity increases only with Rek/2 , this implies that

not only the volume, but also the enstrophy contained in them decreases rapidly as
the Reynolds number increases.

6. Conclusions and future work

We have shown that the vortex strong filaments in isotropic turbulence have

lengths and axial correlation lengths of the order of the integral scale of the flow,

even if the stretching along their axes has a spatial scale of the order of the Kol-

mogorov length and seems essentially indistinguishable from the strain in the bulk

of the flow. We have also shown that the average radius of the vortices is very

close to the Burgers' radius corresponding to the mean axial strain, even if large

segments of the axes are actually under compression. We have suggested that this is
accomplished through the action of axial waves, which distribute the effective strain

along the axes. All these observations hold for hyperviscous flows with the obvious

modifications needed to accommodate the different core structure of the vortices.

We can think of few mechanisms to generate coherent vortices of such lengths

in turbulent flows. The obvious one, in which vortices form by roll-up of the large

scale vorticity layers in between large eddies, is unlikely because it can readily be

shown that the large-scale stretching is at most able to collapse vortices to radii

of the order of the Taylor microscale, and it is difficult to think of a way in which

straining motions of the observed scales, r/, could further collapse these cores, much
thicker than themselves, into more compact cores.

Another possibility, and the one that we favor at the moment, is a mechanism

by which short vortex "sticks" form individually and are later patched by the axial

waves into longer units. This mechanism has been demonstrated in simpler situa-

tions in (Verzicco, Jim_nez and Orlandi 1994). Note that from Figs. 10 and 11, the
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elongation of the worms, g,./< r >, although large and increasing with Rex, never
exceeds 10-20 in our range of Reynolds numbers.

A remaining problem is the growth of the circulation of the vortices with Rex.

It was noted in JWSR that this implies an increase of the Reynolds number of

the azymuthal motion of the individual structures and that at some point those

structures should become unstable. We still feel that way, but we have no way of
predicting the conditions for this instability.

We have also shown that the volume fraction occupied by worms decreases as

Re-_ 2. This is somewhat misleading and should be understood in relation to the

decrease of their radii. If we remember that 7/,_ Re_ 3/2, it follows that the accu-

mulated length of the structures grows like L, Rex, and their total "number" per

unit volume, as Rex. This is difficult to reconcile with their increasing instability

as their Reynolds number increases. It has been proposed recently that an internal

structural transition might exist in turbulence at Rex _ 103, resulting in a decrease

of intermittency (Tabeling et al. 1994). If this is confirmed, it could possibly resolve
the present dilemma.

Finally, we have described the effect of hyperviscosity in isotropic simulations.

The resulting spectra are dominated by large humps in the near dissipation region,

which extend to the last wave number decade of the inertial range. They seem to

be generated by the energy "bottleneck" produced by the inhibition of the energy
cascade by viscosity.



Small-scale vorticity in isotropic turbulence 311

Acknowledgments

The simulations were carried out on the Intel hypercube at NASA Ames Research

Center and on the Intel Paragon at Wright Patterson AFB. The assistance of these

computer centers' personnel is also gratefully acknowledged.

REFERENCES

BATCHELOR, G. K. 1953 The theory of homogeneous turbulence. Cambridge Univ.
Press.

BORUE, V. & ORSZAG, S. A. 1994 Forced three-dimensional homogeneous turbu-

lence with hyperviscosity. Preprint.

FALKOVICH, G. 1994 Bottleneck phenomenon in developed turbulence. Phys. Flu-
ids. 6, 1411-1414.

JIMI_NEZ, J. 1994a Hyperviscous vortices. J. Fluid Mech. 279, 169-176.

JIMI_.NEZ J. 1994b Resolution requirements in turbulence. CTR Annual Res. Briefs

JIM_NEZ, J. & WRAY, A. A. 1994 Columnar vortices in isotropic turbulence.

Meccanica. to appear.

JIMI_NEZ, J., WRAY, A. A., SAFFMAN, P. G. & ROGALLO, R. S. 1993 The

structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 65-
90.

MESTAYER, P. 1982 Local isotropy and anisotropy in a high-Reynolds-number

turbulent boundary layer. J. Fluid Mech. 125, 475-503.

MESTAYER, P., CHOLLET, J. P. & LESlEUR, M. 1983 Inertial subrange of ve-
locity and scalar variance spectra in high-Reynolds-number three-dimensional

turbulence, in Turbulence and chaotic phenomena in fluids (T. Tatsumi, ed.),
285-.

ROGALLO, R. S. 1981 Numerical experiments in homogeneous turbulence. NASA

Tech. Mere.. 81315, see also Canuto, C., Hussaini, M. Y., Quarteroni, A. and

Zang, T. A.,Spectral methods in fluid dynamics. Springer (1981), pp. 85-86.

RYZHENKOVA, I. V. & FALKOVICH, G. E. 1990 Effect of dissipation on the struc-

ture of a stationary wave turbulence spectrum. Soy. Phys. JETP. 71, 1085-
1090.

SADDOUGHI, S. G. & VEERAVALLI, S. V. 1994 Local isotropy in turbulent bound-

ary layers at high Reynolds number. J. Fluid Mech. 268, 333-372.

SHE, Z-S. & JACKSON, E. 1993 On the universal form of the energy spectrum in

fully developed turbulence. Phys. Fluids A. 5, 1526-1528.

TABELING, P., ZOCCHI, G., BELIN, F., MAURER, J. & WILLAIME, H. 1994

Probability density functions, skewness and flatness in large Reynolds number
turbulence. Preprint.

TOWNSEND, A. A. 1951 On the fine scale structure of turbulence. Proc. Roy. Soc.
London. A 208, 534-542.



312 J. Jimgnez _J A. A. Wray

VAN ATTA, C. W. _._ ANTONIA, R. A. 1980 Reynolds number dependence of
skewness and flatness factors of turbulent velocity derivatives. Phys. Fluids.

23, 252-257.

VERZICCO, R., JIMI_NEZ, J. _ ORLANDI, P. 1994 On steady columnar vortices

under local compression. Preprint.

YAKHOT, V. _ ZAKItAROV, V. 1993 Hidden conservation laws in hydrodynamics:

energy and dissipation rate fluctuation spectra in strong turbulence. Physica.

D 64_ 379-394.


